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NOTE ON n−GROUPS

Janez Ušan and Malǐsa Žižović∗

Abstract. Among the results of the paper is the following propo-
sition. Let n ≥ 3 and let (Q,A) be an n−grupoid. Then: (Q,A) is an
n−group iff there are mappings α and β, respectively, of the sets Qn−2

and Q into the set Q such that the laws

A(A(xn
1 ), x2n−1

n+1 ) = A(x1, A(xn+1
2 ), x2n−1

n+2 ),

βA(xn
1 ) = A(xn−1

1 , β(xn)) = A(xn−2
1 , β(xn−1), xn),

A(x, an−2
1 ,α(an−2

1 )) = A(bn−2
1 ,α(bn−2

1 ), x) and

βA(x, cn−2
1 ,α(cn−2

1 )) = x

hold in the algebra (Q, {A,α, β}) [:3.1].

1. Preliminaries

1.1. Definitions: Let n ≥ 2 and let (Q,A) be an n−groupoid. Then:
(a) we say that (Q,A) is an n−semigroup iff for every i, j ∈ {1, ..., n}, i < j,
the following law holds

A(xi−1
1 , A(xi+n−1

i ), x2n−1
i+n ) = A(xj−1

1 , A(xj+n−1
j ), x2n−1

j+n )

[: 〈i, j〉− associative law];
(b) we say that (Q,A) is an n−quasigroup iff for every i ∈ {1, ..., n} and

for every an
1 ∈ Q there is exactly one xi ∈ Q such that the following equality

holds
A(ai−1

1 , xi, a
n−1
i ) = an; and

(c) we say that (Q,A) is a Dörnte n−group [briefly; n−group] iff (Q,A) is
an n−semigroup and an n−quasigroup as well.

A notion of an n−group was introduced by W. Dörnte in [1] as a gen-
eralization of the notion of a group.
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1.2. Proposition [2]: Let n ≥ 3 and let (Q,A) be an n−semigroup.
Further on, let i be an arbitrary element of the set {1, ..., n−2}. Then: (Q,A)
is an n−group iff for every a, b, c ∈ Q and for every sequence an−3

1 over
Q[: 1.1;n ≥ 3] there is exactly one ξ ∈ Q such that the following equality
holds

A(a, ai−1
1 , ξ, an−3

i , b) = c.
See, also [9].

1.3. Definition [6]: Let n ≥ 2 and let (Q,A) be an n−groupoid. Further
on, let e be an mapping of the set Qn−2 into the set Q. Let also {i, j} ⊆
{1, ..., n} and i < j. Then: e is an {i, j}− neutral operation of the n−grupoid
(Q,A) iff the following formula holds

(∀ai ∈ Q)n−2
1 (∀x ∈ Q)(A(ai−1

1 , e(an−2), aj−2
i , x, an−2

j−1 ) = x

∧A(ai−1
1 , x, aj−2

i , e(an−2
1 ), an−2

j−1 ) = x).
[For n = 2, e(an−2

1 ) = e(∅) ∈ Q is a neutral element of the groupoid (Q,A).]

1.4. Proposition [6]: Let n ≥ 2, {i, j} ⊆ {1, ..., n} and i < j. Then in
every n−groupoid there is at most one {i, j}−neutral operation.

1.5. Proposition [6]: In every n−group, n ≥ 2, there is a {1, n}−
neutral operation.
[There are n−groups without {i, j}− neutral operations with {i, j} �= {1, n}
[: [7] ]. In [7], n−groups with {i, j}−neutral operations, for {i, j} �= {1, n} are
described.]

1.6. Proposition [6]: Let n ≥ 3 and let (Q,A) be an n−semigroup.
Then: (Q,A) is an n−group iff (Q,A) has a {1, n}−neutral operation.

1.7. Remark: In [8] it was shown that the condition ”...(Q,A) as an
n−semigroup ...” can be weakened to the condition ”...(Q,A) is an 〈1, 2〉−
associative n−grupoid ...” or to the condition ”...(Q,A) is an 〈n − 1, n〉−
associative n−groupoid ...”.

1.8. Proposition: Let n ≥ 3 and let (Q,A) be an n−groupoid. Then
the following statements holds:

(I) If (a) the 〈1, 2〉−associative law holds in (Q,A), and (b) for every
x, y, an−1

1 ∈ Q the following implication holds

A(x, an−1
1 ) = A(y, an−1

1 ) ⇒ x = y,

then (Q,A) is an n−semigroup; and
(II) If (a) the 〈n − 1, n〉−associative law holds in (Q,A), and (b) for

every x, y, an−1
1 ∈ Q the following implication holds

A(an−1
1 , x) = A(an−1

1 , y) ⇒ x = y,
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then (Q,A) is an n−semigroup.
Proposition 1.8 can be proved by the method of E.I. Sokolov from [3].

2. Auxiliary propositions

2.1. Proposition: Let (Q,A) an be n−group, e its {1, n}−neutral op-
eration and n ≥ 2. Then for every sequence an−2

1 over Q, every sequence bn−2
1

over Q and for every x ∈ Q the following equalities hold
(i) A(e(an−2

1 ), an−2
1 , x) = A(x, e(bn−2

1 ), bn−2
1 )[= x] and

(ii) A(an−2
1 , e(an−2

1 ), x) = A(x, bn−2
1 e(bn−2

1 ))[= x].
The sketch of the proof of (i): 1) for n = 2 the formula (a) reduces

to the formula A(e(∅), x) = A(x, e(∅)), and

2) Let n ≥ 3. F (x, bn−2
1 )

def
= A(x, e(bn−2

1 ), bn−2
1 ) ⇒

A(F (x, bn−2
1 ), e(bn−2

1 ), bn−2
1 ) =A(A(x, e(bn−2

1 ), bn−2
1 ), e(bn−2

1 ), bn−2
1 ) ⇒

A(F (x, bn−2
1 ), e(bn−2

1 ), bn−2
1 ) =A(x,A(e(bn−2

1 ), bn−2
1 , e(bn−2

1 )), bn−2
1 ) ⇒

A(F (x, bn−2
1 ), e(bn−2

1 ), bn−2
1 ) =A(x, e(bn−2

1 ), bn−2
1 ) ⇒

F (x, bn−2
1 ) = x⇒A(x, e(bn−2

1 ), bn−2
1 ) = A(e(an−2

1 ), an−2
1 , x).

2.2 Remark: Let n ≥ 2, let (Q,A) be an n−groupoid and let α be an
(n−2)−ary operation in Q. Then, for example, each of the following formulas

(1) (∀ai ∈ Q)n−2
1 (∀bi ∈ Q)n−2

1 (∀x ∈ Q)A(x, an−2
1 ,α(an−2

1 )) = A(bn−2
1 ,

α(bn−2
1 ), x),

(2) (∀ai ∈ Q)n−2
1 (∀bi ∈ Q)n−2

1 (∀x ∈ Q)A(x,α(an−2
1 ), an−2

1 ) = A(α(bn−2
1 ),

bn−2
1 , x),

(3) (∀ai ∈ Q)n−2
1 (∀bi ∈ Q)n−2

1 (∀x ∈ Q)A(x, an−2
1 ,α(an−2

1 )) = A(α(bn−2
1 ),

bn−2
1 , x),

for n = 2 reduces to the formula
(4) (∀x ∈ Q)A(x,α(∅)) = A(α(∅), x).

Whence, we conclude that α, defined by any of the formulas (1) - (3), repre-
sents a generalization of the nullary operation - fixing a central element of
the groupoid (Q,A).

2.3. Proposition [10]: Let n ≥ 2, let (Q,A) be an n−groupoid and let
α be an (n− 2)−ary operation in Q. Then the following implications hold

(1) ⇒ (2) ∧ (3) and (2) ⇒ (1) ∧ (3),
where (1) - (3) are statements from 2.2

2.4. Proposition [10]: These is an algebra (Q, {A,α}) of the type
〈n, n−2〉 such that the following holds: a) (Q,A) is an n−group , b) n ≥ 3, c)
the statement (3) from 2.2 and d) the statement (1) from 2.2 does not hold.
[(2) ⇐⇒ (1); 2.3].
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2.5. Proposition [10]: Let n ≥ 3, let (Q,A) be an n−group and let
α be an (n − 2)−ary operation in Q. Further on, let the statement (1) [or
statement (2)] from 2.2 [: 2.3] hold in the algebra (Q, {A,α}) [of the type
〈n, n − 2〉]. Then there is a permutation α of the set Q such that for every
x ∈ Q, for every sequence xn

1 over Q, for every sequence an−2
1 over Q and for

every i ∈ {1, ..., n}, the following equalities hold
A(x, an−2

1 ,α(an−2
1 )) = α(x) and αA(xn

1 ) = A(xi−1
1 , α(xi), xn

i+1).
[Whence, since α ∈ Q!, we conclude that for every i ∈ {1, ..., n} and for every
xn

1 ∈ Q also A(xi−1
1 , α−1(xi), xn

i+1) = α−1A(xn
1 ). ]

2.6. Definition: [10]: Let (Q,A) be an n−group and n ≥ 2. Let also
α be an (n − 2)−ary operation in the set Q. We say that α is a central
operation of the n−group (Q,A) iff the following formula holds

(∀ai ∈ Q)n−2
1 (∀bi ∈ Q)n−2

1 (∀x ∈ Q) A(α(an−2
1 ), an−2

1 , x) =
A(x,α(bn−2

1 ), bn−2
1 )

[: formula (2) from 2.2].

2.7. Remark: The {1, n}−neutral operation e of the n−group (Q,A)
is a central operation of that n−group [: 2.6, 2.1].

2.8. Proposition [4,5]:1) Let n ≥ 3, let (Q,A) be a 〈1, 2〉−associative
n−groupoid and let E be an (n − 2)−ary operation in Q. In addition, let for
every x ∈ Q, for every sequence an−2

1 over Q and for every sequence bn−2
1

over Q the following equalities hold
(a) A(x, an−2,E(an−2

1 )) = x and
(b) A(bn−2

1 ,E(bn−2
1 ), x) = x.

Then (Q,A) is an n−group.
The sketch of the proof:
10 (∀ai ∈ Q)n−2

1 (∀a ∈ Q)(∀x ∈ Q)(∀y ∈ Q)(A(x, a, an−2
1 ) = A(y, a,

an−2
1 ) ⇒ x = y). [A(x, a, an−2

1 ) = A(y, a, an−2
1 ) ⇒ A(A(x, a, an−2

1 ),E(an−2
1 ),

cn−3
1 ,E(a, cn−3

1 )) = A(A(y, a, an−2
1 ),E(an−2

1 ), cn−3
1 ,E(a, cn−3

1 )) ⇒ A(x,A(a, an−2
1 ,

E(an−2
1 )), cn−3

1 ,E(a, cn−3
1 )) = A(y,A(a, an−2

1 ,E(an−2
1 )), cn−3

1 ,E(a, cn−3
1 )) ⇒ A(x,

a, cn−3
1 ,E(a, cn−3)) = A(y, a, cn−3,E(a, cn−3)) ⇒ x = y; (a), n ≥ 3.]

20 (Q,A) is an n−semigroup. [A(A(xn
1 ), x2n−1

n+1 ) = A(x1, A(xn+1
2 ),

x2n−1
n+2 ), 10, 1.8; n ≥ 3.]

30 (∀a ∈ Q)(∀ci ∈ Q)n−3
1 a = E(cn−3

1 ,E(a, cn−3
1 )). [A(a, cn−3

1 ,E(a,
cn−3
1 ),E(cn−3

1 ,E(a, cn−3
1 ))) = E(cn−3

1 ,E(a, cn−3
1 )), A(a, cn−3

1 ,E(a, cn−3
1 ),E(cn−3

1 ,
E(a, cn−3

1 ))) = a; (b), (a), n ≥ 3.]

1)See: Corollary 5 in [4] and Theorem 2.6 in [5].
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40 (∀ai ∈ Q)n−2
1 (∀a ∈ Q)(∀x ∈ Q)(∀y ∈ Q)(A(a, x, an−2

1 ) = A(a,
y, an−2

1 ) ⇒ x = y). [A(a, z, an−2
1 ) = A(E(cn−3

1 ,E(a, cn−3
1 )), z, an−2

1 ), A(a, x,
an−2

1 ) = A(a, y, an−2
1 ) ⇒ A(cn−3

1 ,E(a, cn−3
1 ), A(E(cn−3

1 ,E(a, cn−3
1 )), x, an−2

1 ),
E(an−2

1 )) = A(cn−3
1 ,E(a, cn−3

1 ), A(E(cn−3
1 ,E(a, cn−3

1 )), y, an−2
1 ),E(an−2

1 )); 30, 20

(: 〈1, n − 1〉–associative law), (b), (a)].
50 (∀ai ∈ Q)n−2

1 (∀a ∈ Q)(∀x ∈ Q)(∀y ∈ Q)(A(an−2
1 , x, a) = A(an−2

1 , y,
a) ⇐⇒ x = y). [A(an−2

1 , x, a) = A(an−2
1 , y, a) ⇒ A(d2

1, A(an−2
1 , x, a), dn−1

3 ) =
A(d2

1, A(an−2
1 , y, a), dn−1

3 ) ⇒ A(A(d2
1, a

n−2
1 ), x, a, dn−1

3 ) = A(A(d2
1, a

n−2
1 ), y, a,

dn−1
3 ) ⇒ x = y; x = y ⇒ A(an−2

1 , x, a) = A(an−2
1 , y, a); 20 (: 〈1, 3〉−associative

law), 40, (n− 1)−monotony.]
60 (∀x ∈ Q)(∀a ∈ Q)(∀b ∈ Q)(∀ai ∈ Q)n−2

1 (A(a, x, an−2
1 ) = b ⇐⇒

x = A(cn−3
1 ,E(a, cn−3

1 ), b,E(an−2
1 )). [A(a, x, an−2

1 ) = b⇐⇒ A(cn−3
1 ,E(a, cn−3

1 ),
A(E(cn−3

1 ,E(a, cn−3
1 ), x, an−2

1 ), E(an−2
1 )) = A(cn−3

1 ,E(a, cn−3
1 ), b,E(an−2

1 )); 30,
20 (: 〈1, n − 1〉-associative law), (b), (a).]

Finally, considering 20, 40 and 60, by Proposition 1.2, we conclude that
(Q,A) is n−group. �

Similarly, one could prove also the following proposition:

2.9. Proposition: Let n ≥ 3, let (Q,A) be an 〈n − 1, n〉−associative
n−groupoid and let E be an (n − 2)−ary operation in Q. In addition, let for
every x ∈ Q, for every sequence an−2

1 over Q and for every sequence bn−2
1

over Q the following equalities hold
A(E(an−2

1 ), an−2
1 , x) = x and A(x,E(bn−2

1 ), bn−2
1 ) = x.

Then (Q,A) is an n−group.

2.10. Remark: E from 2.8 and from 2.9 is an {1, n}−neutral operation
of the n−group (Q,A) [: 2.8 (2.9), 1.5, 1.1].

3. Results

3.1. Theorem: Let n ≥ 3 and let (Q,A) be an n−groupoid. Then:
(Q,A) is an n−group iff there are mappings α and β, respectively, of the sets
Qn−2 and Q into the set Q such that the laws

(1) A(A(xn
1 ), x2n−1

n+1 ) = A(x1, A(xn+1
2 ), x2n−1

n+2 ),
(2) A(x, an−1

1 ,α(an−2
1 )) = A(bn−2

1 ,α(bn−2
1 ), x),

(3) βA(x, cn−2
1 ,α(cn−2

1 )) = x and
(4) βA(xn

1 ) = A(xn−1
1 , β(xn)) = A(xn−2

1 , β(xn−1), xn)
hold in the algebra (Q, {A,α, β}).

Proof. a) ⇒: Let (Q,A) be an n−group and let e be its {1, n}−neutral
operation; n ≥ 3. Whence, by Proposition 2.1 [(ii)], we conclude that there is
[at least one] (n− 2)-ary operation α [= e] and [at least one] unary operation
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β [= {(x, x) | x ∈ Q}] such that the laws (1) - (4) hold in the algebra
(Q, {A,α, β}).

b) ⇐: Let (Q, {A,α, β}) be an algebra of the type 〈n, n− 2, 1〉 in which
the laws (1) - (4) hold. By the assumption that in (Q, {A,α, β}) the laws (2)
- (4) hold, we conclude that in (Q, {A,α, β}) also the following laws hold

(5) A(x, an−2
1 , βα(an−2

1 )) = x and
(6) A(bn−2

1 , βα(bn−2
1 ), x) = x.

Since the laws (1), (5) and (6) hold in (Q, {A,α, β}), by Proposition 2.8, we
conclude that (Q,A) is an n−group. [In addition, the {1, n}−neutral opera-
tion is defined by the formula

(∀ci ∈ Q)n−2
1 e(cn−2

1 ) = βα(cn−2
1 );

2.10.]
Similarly, it is possible to prove that the following proposition holds:

3.2. Theorem: Let n ≥ 3 and let (Q,A) be an n−groupoid. Then:
(Q,A) is an n−group iff there are mappings α and β, respectively, of the sets
Qn−2 and Q into the set Q such that the laws

(1̄) A(xn−2
1 , A(x2n−2

n−1 ), x2n−1) = A(xn−1
1 , A(x2n−1

n )),
(2̄) A(α(an−2

1 ), an−2
1 , x) = A(x,α(bn−2

1 ), bn−2
1 ),

(3̄) βA(α(cn−2
1 ), cn−2

1 , x) = x and
(4̄) βA(xn

1 ) = A(β(x1), xn
2 ) = A(x1, β(x2), xn

3 )
hold in the algebra (Q, {A,α, β}).

3.3. Theorem: Let n ≥ 3 and let (Q,A) be an n−group. Then (Q,A)
is an n−group iff there are mappings α and β, respectively, of the sets Qn−2

and Q into the set Q such that the laws
(1̂) A(A(xn

1 ), x2n−1
n+1 ) = A(x1, A(xn+1

2 ), x2n−1
n+2 ) [ or

(ˆ̂1) A(xn−2
1 , A(x2n−2

n−1 ), x2n−1) = A(xn−1
1 , A(x2n−1

n ))],
(2̂) A(x, an−2

1 ,α(an−2
1 )) = A(α(bn−2

1 ), bn−2
1 , x),

(3̂) βA(x, an−2,α(cn−2
1 )) = x and

(4̂) βA(xn
1 ) = A(xn−1

1 , β(xn)) = A(β(x1), xn
2 )

hold in the algebra (Q, {A,α, β}).

Proof. â) ⇒: Let (Q,A) be an n−group and let e be its {1, n}−neutral
operation [: 1.5] ; n ≥ 3. Whence, by 1.3, we conclude that there is at least
one] (n − 2)- ary operation α [= e] and at least one unary operation β [=

{(x, x)|x ∈ Q}] such that the algebra (Q, {A,α, β}) the laws (1̂), ˆ̂(1) − (4̂)
hold.
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b̂) ⇐: Let (Q, {A,α, β}) be an algebra of the type 〈n, n − 2, 1〉 in
which the laws (1̂), (2̂) − (4̂)[(ˆ̂1), (2̂) − (4̂)] hold. By the assumption that in
(Q, {A,α, β}) hold the laws (2̂)− (4̂), we conclude that in (Q, {A,α, β}) also
the following laws hold

(5̂) A(x, an−2
1 , βα(an−2

1 )) = x, and
(6̂) A(βα(bn−2

1 ), bn−2
1 , x) = x

[either in (Q, {A,α, β}) holds the laws (1̂) or the law (ˆ̂1)]. Since in (Q, {A,α,
β}) hold the laws (1̂), (5̂) and (6̂)[(ˆ̂1), (5̂) and (6̂)], by 1.6 and 1.7 we conclude
that (Q,A) is an n−group. [The {1, n}−neutral operation e of the n−group
(Q,A) satisfies the formula

(∀ci ∈ Q)n−2
1 e(cn−2

1 ) = βα(cn−2
1 );

2.10.]

3.4. Example: Let ({1, 2, 3, 4}, ·) be the Klein’s group [Tab. 1] and −1

the corresponding inverse operation. Further on, let ϕ be the permutation of
the set {1, 2, 3, 4} defined in the following way

ϕ
def
=

(1 2 3 4
1 2 4 3

)
.

· 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

Tab. 1

[Then: (a) ϕ ∈ Aut({1, 2, 3, 4}, ·); (b) (∀x ∈ {1, 2, 3, 4})ϕ2(x) = x; (c) ϕ(2) =
2; and (d) ϕ(1) = 1].

3.4.1. Example: Let A(x3
1)

def
= x1·ϕ(x2)·x3·2 and α(c)

def
= 3·(ϕ(c))−1.

Then: (i) ({1, 2, 3, 4}, A) is an 3-group; and (ii) for every c ∈ {1, 2, 3, 4} the fol-
lowing equalities hold A(α(c), c, x) = 4x, A(x, c,α(c)) = 4x, A(x,α(c), c) =
3x.
[See Proposition 2.4.]

3.4.2. Example: Let B(x3
1)

def
= x1 ·ϕ(x2) ·x3 and β(c)

def
= 2 ·(ϕ(c))−1.

Then: (1) ({1, 2, 3, 4}, B) is an 3-group; and (2) for every c ∈ {1, 2, 3, 4} the
following equalities hold B(β(c), c, x) = 2x and B(x,β(c), c) = 2x.
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